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NOMENCLATURE

Function defined by Eq.
Function defined by Eq.

(44)

(41)
Function defined by Eq. (45)
Function defined by Eq. (42)
Function defined by Eq. (46)
Function defined by Eq. (
Specific heat at constant pressure
Function defined by Eqg. (50)
Function defined by Eq. (49)

Dimensionless stream function defined by Eq. (8)

Grashof number based on the radius as a characteristic dimension,
defined as gfTw - Ta 1rg/u2

Grashof number based on the axial distance x as a characteristic
dimension, defined as gﬁ| Tw - Ta_|x3/v2

Acceleration due to gravity

Local heat-transfer coefficient

Average heat-transfer coefficient defined by Eq. (35)
Constant defined as gﬁ‘TW - Ta|r%/2v

Thermal conductivity

Nusselt number based on the radius of the cylinder as a character-
istic dimension; see Eq. (32)

Nusselt number based on the axial distance along the cylinder as a
characteristic dimension; see Eq. (33)

Prandtl number defined as ucp/k
Radial coordinate

Radius of the cylinder

Local heat flux

Temperature

Ambient coolant temperature
Temperature at the wall of the cylinder
Parameter in Eq. (19)

Velocity of the coolant in the axial direction
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v Velocity of the coolant in the radial direction

b's Axial coordinate

y Radial coordinate defined as y = r - 1y

a Thermal diffusivity defined as k/pcy,

B Coefficient of the volumetric expansion of the fluid
) Momentum boundary layer thickness defined by Eq. (21)
Ot Thermal boundary layer thickness

7 Dimensionless coordinate defined by Eq. (6)

6 Dimensionless temperature defined by Eq. (9)

u Dynamic viscosity

v Kinematic viscosity

£ Dimensionless x-parameter defined by Eq. (7)

P Density

o Function defined as 1/Nu

T Shear stress at the surface

Y Stream function defined by Eq. (8)

Subscripts

fp Refers to a flat plate

cyl Refers to cylinder

Superscripts

! Denotes differentiation with respect to variable 7
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THE AXISYMMETRIC FREE-CONVECTION
HEAT TRANSFER ALONG A VERTICAL THIN CYLINDER
WITH CONSTANT SURFACE TEMPERATURE

by

R. Viskanta

ABSTRACT

The subject of this study is the problem of laminar
free-convection flow produced by a heated, vertical, circu-
lar cylinder for which the temperature at the outer surface
of the cylinder is assumed to be uniform. The solution of
the boundary-layer equations was obtained by two methods:
(1) the perturbation method of Sparrow and Gregg, which
is valid only for small values of the axial distance param-
eter £ ;and (2) the integral method of Hama et al., for large
values of the parameter §. Heat-transfer results were cal-
culated for Prandtl numbers (Pr) (o3t IO, L0, Ay 1L, L 72, @0,
0.03, 0.02, and 0.01. It was found that the Nusselt numbers
(Nu) for the cylinder were higher than those for the flat
plate, and this difference increased as Pr decreased. It
was also found that the perturbation method of solution of
the free-convection boundary-layer equations becomes use-
less for smallvalues of Pr because of the slow convergence
of the series. The results obtained by the integral method
were in good agreement with those calculated by the pertur-
bation method for Pr = 1 and 0.1 < £ < 1 only; they deviated
considerably for smaller values of €.

I. INTRODUCTION

The gravitational free convection from a number of typical geome-
tries, such as the vertical flat plate, the horizontal tube, and the vertical
circular cylinder, are important in industrial applications. Even though
laminar free convection on a vertical plate has been a subject of study
since 1881, there has been little study of laminar free-convection heat
transfer from a vertical thin cylinder. Recently, the knowledge of heat
transfer from a fuel pin (a circular cylinder) under free-convection condi-
tions has become of particular importance in considerations of reactor
safety. When the boundary-layer thickness is small compared with the
radius of the cylinder, the effect of transverse curvature on the flow and
heat transfer is negligible, and the velocity and temperature distributions
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can be well approximated by the solution of the problem of the vertical flat
plate. As the distance from the leading nose increases, the thickness of
the boundary layer also increases, so that the effect of transverse curva-
ture becomes no longer negligible, and the results for a vertical cylinder
depart more and more from those of a flat plate.

The theoretical investigations of the axisymmetric free convection
are primarily limited to the study of Sparrow and Gregg,(l) who solved
the boundary-layer equations and obtained numerical results for Prandtl
numbers of 0.72 and 1, as applicable for gases; and the more recent ana-
lytical and experimental study of Hama e_ta_l.,(z) for Prandtl number 0.72,
as applicable for air. References (1) and (2) also list other related work
on free-convection problems. The solution of Sparrow and Gregg provides
a very good approximation of the boundary-layer equations near the nose
of the cylinder where the boundary-layer thickness is small compared with
the radius of the cylinder. The solution is not expected to be applicable in
the region far from the nose where the thickness of the boundary layer is
comparable with or much larger than the radius of the cylinder. This is
the case as shown analytically and verified experimentally by Hama et al.

This report presents a study of laminar free-convection heat trans-
fer from a vertical thin cylinder at a constant surface temperature. The
analyses of References (1) and (2) are extended to fluids with high and low
Prandtl numbers. In the latter case, i.e., for liquid metals, the inertia
terms in the momentum equation are not negligible in comparison with
the viscous terms, and therefore the inertia terms have been retained in
the momentum integral equation.

II. ANALYSIS

General Considerations and Mathematical Formulation

The physical model and coordinate system are indicated in Fig. 1.
Two physical situations that come within the scope of the analysis are
shown. In Fig. 1(a) the wall temperature Ty, exceeds the ambient temper-
ature T,. For this case, due to buoyancy forces, an upward flow of fluid
in the boundary layer is established. In Fig. 1(b) the wall temperature is
cooler than the ambient temperature, and the flow of the fluid in the boundary
layer is downward.

If the coordinate systems are taken as shown in Fig. 1, there is no
distinction between the two problems and the method of analysis and the
results for heat transfer are the same; thus, there is no need to treat the
problems separately.
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(a)TM>Ta (b)Tw<Ta

Fig. 1. Physical Model and Coordinate System

The basic conservation equations of mass, momentum, and energy
for axisymmetric laminar free convection along a vertical cylinder, under
the assumptions of boundary-layer approximations and constant physical

properties, are given by

aa_x(ru)+ 'a%?(rv): 0o 2

ugi+v%3:%éa?<r%>tgﬁ(T'Ta> ; el
T S @ o) oT

ua—x+"7=?é‘;<r¥> ' "

Viscous dissipation and work against the gravity field have been neglected.
In accord with the usual practice in free convection, the density has been

considered a variable only in formulating the buoyancy term [t gB(T - Ta)].
The plus sign is associated with Fig. 1(a), whereas the minus sign is used

with Fig. 1(b).
The boundary conditions to be satisfied are given by

n=yv =0 . Al Al Gy 1 = oig)
(4)
u=0 3 SRS =T Sa bt o






Solution of the Problem for Small Values of the x-Parameter (£)

In the case of free convection from a vertical cylinder, there is only
one "similarity" solution in the literature,(3:4) and that solution is for the
temperature and velocity distributions satisfying pertinent boundary condi-
tions for a linear variation of the surface temperature along the cylinder.
The only solution of the axisymmetric laminar free convection along a
vertical thin cylinder, with constant surface temperature, obtained so far
is that by Sparrow and Gregg.(” Their solution employed a perturbation
method first applied by Seban and Bond(5) and by Kelly(é) for forced con-
vection along a horizontal cylinder. Here the continuity equation, Eq. (1),
is satisfied by introducing the stream function defined by

SN A TS Sy Dk 9 (5)

T or 2

The partial differential equations (2) and (3) are transformed from
the (x,y) coordinate system to the (€,7) system by the use of the follow-
ing substitutions:

Grl/4 (r2 - r3)

= 23/21_3/4}(174 2 (6)
23/2 x \ 174 298 [ o
€ G\t T Gilf\re) i
) Gr3/4vrg/4x1/4f(€ 1)
Y = =z (8)
2
A5 Ta

Then, by assuming that f and 6 can be expanded in power series of

HEah=eeilin )+ E6(n) + E%a(n) & = 4] (10)

and

8(£,m) = 8oln) + £64(n) + £262(n) + .-+ (11)

the partial differential equations in the coordinate system (£,7) reduced to
the following systems of ordinary differential equations:

gl £13 Pr £,8, =0
] (12)

g Gl = AEE G g e



SRS

£eid i
gt
(R TR ; g
Follads iz al o le
(Tt bl s S O 5.7

e

HEEE e '
P naioubo TS

O i in it mis (EY-boe (3) an Ll ":s}'zﬁ'!'ti.b Isl‘!g‘_‘
| -welics 5D o adt yd castay 3} SdY R rasieys Sienli
S B Fele

2

(57 - 5x) #MaD
e e T2
I‘M ! Ny s

7 i e s s T |
e .
Sig _

Sea
e
AR

JOREse e 1o wag 3 ¥ brg Tiisd BirRuae iy M

3'.




10

Bl +8¢+mBg - Prifeh; - 4 £,60 - 3 £8)) = 0

s (13)
£" + £ +nfy - 5 fofy +4 fof) + 31T + 6 =0
8, +6, +m6;y - Pr(fi6, + 2 £38; - 5 £,60 - 4 £16; - 3 £o6) = 0
£, +£) +Mf - 6 fof, - 3(£))2 +5 fof, +4 £, +36,f5+6;, = 0
(14)

in which the primes denote differentiation with respect to 7).

The boundary conditions, Eq. (4), become in the coordinate system

of (£,m)

=0 ,  EpSilak =0
: (12a)
T =Eh =0 atng = e
f=f =0, = 0a p=0
ik ) (13a)
f,=6,=0at n—> o
el =@, =0a: =0
(14a)

fZ'ZQZ'ZOat‘q—»oo
Additional mathematical details can be found in Reference (1).

The zeroth-order approximation, Eq. (12), and the corresponding
boundary conditions given in Eq. (12a) are identical with the differential
equations for free convection along a vertical flat plate. Numerical solu-
tions of these equations covering a large range of Prandtl numbers have
been tabulated in detail.(7,8) The solution of Egs. (13) and (14), subject to
the boundary conditions, Egs. (13a) and (14a), respectively, is discussed in
Appendix A.

Solution of the Problem for Large Values of the x-Parameter (E,)

Since the x-parameter (£) is essentially a ratio of the thickness of
the thermal boundary layer to the radius of the cylinder, it is expected
from the nature of the expansion of f(£,n) and 6(€,7) in power series of
£ that the Sparrow and Gregg solution should provide a good approximation
near the leading edge, where the thickness of the thermal boundary layer
is small in comparison with the radius of the cylinder. The radius of
convergence of the series given by Egs. (lO)and(ll) is not known; however,
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it is not expected to be greater than one (< 1). Therefore, the results(l)
will not be applicable in the region far from the stagnation point, where

€ > 1 and the boundary-layer thickness is much larger than the radius of
the cylinder. For this reason, the Karman-Pohlhausen integral method,
as extended by Glauert and Lighthill,(g) Mark,(lo) and Hama et a_l_l_.,(z)
will be used to obtain an approximate solution for large values of the
x-parameter (£).

It is assumed(11l) that the common boundary-layer thickness ()
can be used for both the momentum and thermal boundary layers. This
assumption has its justification in that the results of calculations based
on the assumption agree with those from exact solutions of the boundary-
layer differential equations. Other authors,(12,13) in their studies of
free-convection problems, have assumed that the thickness of the thermal
boundary layer, &t, is different from the thickness of the momentum
boundary layer, &, and these change with the Prandtl number. However,
Merk(14) points out that ét/é =1 for Pr =1 and that ét/é < 1 for Pr > 1.
He further states that "it is not reasonable to assume that 6t > 6, since
this would mean that there are regions in which the temperature field
differs from that of the surrounding fluid, and that in these regions buoy-
ant force is present (in free convection, the velocity is caused by buoyant
forces). Hence, from the physical point of view, it is clear that the upper
bound (5t/(5 is given by (the number) 1." The exact (numerical) solutions
of boundary-layer equations for free convection along a vertical flat plate,
with low Prandtl number coolants, substantiate this conclusion. 8

The integration of the basic equations (2) and (3) from the wall to
the edge of the boundary layer with respect to r, after multiplying by r,

and utilizing the boundary conditions given by Eq. (4), and the continuity
equation (1), yields the integral equations

& ks u?rdr =t gB(Tw - Ty) e Or dr - Vro— (15)
dx . "8 i e o\or o
0

To

and

ro+o
d g 06
— nig ridrt = Ndr, <—-—-> ; (16)
dx fro or o

where 0 is the dimensionless temperature. If a new independent variable,
y = r - rg, is introduced, Egs. (15) and (16) become

W 2(ro+y)dy =t gB(Tw - T )/6 O(ro+y) dy - r v(au) (17)
G b 2 - - o
] \/o‘ ov Y} Gy g a : 0 0 ay ;

11
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and

o)

d

= ub(ro+ y)dy = - arg <2—§> . (18)
@ 0

In applying the Karman-Pohlhausen method of solution to axisym-
metric problems, Glauert and Lighthill(g) and Hama e_ta_l.,(z) emphasize
the importance of a proper profile whose behavior near the solid surface
is realistic. According to Hama 2‘.31., the velocity profile is written as

oo )

The order of error in Eq. (19) is O(y/ro)’>. The temperature profile is
given by

8=1-Nu h(m) : (20)
To

The temperature distribution near the wall is correct to the order of
O(y/ro)*. The thickness of the thermal boundary layer is related to the
Nusselt number (Nu) by the relation

(5/r0:exp (l/Nu)-l 3 (21)

The coefficients U and Nu, which are functions of x, are found from the
boundary conditions of the problem and the integrated momentum and
energy equations.

The terms on the left-hand side of the momentum equation, Eq. (2)
or (17), are the inertia terms. They are rather insignificant in the free-
convection problems unless the Prandtl number is extremely small, such
as in the case of liquid metals; therefore, it is not permissible to omit the
inertia terms in the present analysis.

The functions representing the velocity, Eq. (19), and temperature
distributions, Eq. (20), are introduced into Eqs. (17) and (18), and after
integrations and differentiations are carried out (see Appendix B) there
results

dU do
ooty = 22
adg+bd{§ d (22)
and
Aﬂ+ng-=D (23)

152
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with the initial conditions:
O = o= @ hen =0 ; (24)

Since the differential equations are singular at £ = 0 in the numeri-
cal solution of Egs. (22) and (23), it was only possible to approach the
origin to within €, estimate U and 0 at € = €, and proceed with the numer -
ical integration from that point on. The error introduced by this procedure
could not be estimated. The Runge-Kutta method was used for the numerical
solution of the differential equations.

Skin-Friction and Heat-Transfer Parameters

The local skin friction is obtained by applying the Newtonian shear
formula:

The velocity component u in the x-direction can be expressed in terms of
the dimensionless stream function as

;. Gru/af>

% 4r, \g

(26)

In terms of dimensionless variables, the skin-friction parameter can be
expressed as

T _£7(0)

- e e £[f(0) +££,(0) + £%6,(0) +...] . (27)
pGr (v/1y)

o

Equation (27) can be rewritten as the ratio of the shear stress for a cyl-
inder (cyl) to that for a flat plate (fp) in the form

ol £,'(0) £, (0)
T [1 +€f;"(o_) it 52——%,(0) + o+ : (28)
where

i - f(0) . (29)

p[4er]1/4 (V/x)z

The local heat-transfer coefficient is defined as

9 k oT
h = (Tw‘Ta) - -(TW-Ta)<6r >r:ro o (30)
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In terms of the dimensionless variables defined by Eqs. (6) and (9), the
relation for h becomes

kogal/A <ae>
h=-——— (== ;
2V/2:3/41/4 \3n/p =0 (31)

The Nusselt number Nu, based on the radius of the cylinder as the
characteristic dimension, is defined as

Nusz —= a2 | (32)

The local Nusselt number Nuy, based on the axial distance x as the char-
acteristic dimension,is obtained from the definition of Eq. (32) and expres-
sion of Eq. (31) with the help of Eq. (11) as

Nuy = Nu(—x—> = - % Gri/* [64(0) + £61(0) + E265(0) + --- 1 . (33)
Ty 2

Since the first term on the right-hand side of Eq. (33) represents
the local Nusselt number for the flat plate, Eq. (33) can be rewritten as
the ratio of a local Nusselt number for the cylinder to that for the flat
plate:

Nux,cyl 61(0) 61(0)
e T e (34)

The average heat-transfer coefficient over a length x is defined
e hdx . (35)

If the indicated integration is performed and an average Nusselt number
mx, based on the distance x as the characteristic dimension, is defined,
there results

e vt A 3 Ci
WSty =1 GrY [90(0) Ty € 6,(0) 0y SRR 55 wos . (36)

Again, the first term on the right-hand side of Eq. (36) is the average
Nusselt number for a flat plate.

14
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III. DISCUSSION OF RESULTS

From the solution of Eqgs. (12) through (14), the essential informa-
tion needed in the heat-transfer calculations includes 6,;(0) and 6(0).
These results are listed in Table 1 with the values(7,8) of 65(0). There
are two aspects of these results which should be mentioned: first, that
9{(0) varies only slightly with the Prandtl number over the very wide
range considered here; and secondly, the large magnitudes of 9{(0)/
0 5(0) and 6( /9 ) for small Prandtl numbers. Thus, even for small
¢ values (€ =0.1) the second and third terms of the series begin to be
important. In the perturbation method of Sparrow and Gregg as applied
to liquid metals, the truncation of the series after the third term appears
to be in question, even for values of £ < 0.3; therefore, no effort was
made to obtain solutions for Pr < 0.01.

Table 1

TEMPERATURE GRADIENTS AT THE SURFACE OF THE CYLINDER

Es 64(0) 61(0) 63(0) | 61(0)/6:(0) | 62(0)/84(0)
100 =7, B E] -0.2236 0.1020
10 -1.1694 ~0.2281 0.1347
2 -0.7165 =0} #7251 0.0206 0.3141 -0.0288
1 -0.5671 SON2239 0.0262 0.4034 -0.0462
0.72 -0.5046 =0.2250 0.0298 0.4421 =0 @51
0.1 -0.2301 =0.2217 0.0810 0.6935 =(0).,. 2521
0.03 -0.1346 ~0.2225 011525 1.6523 Sl Bt
0.02 =0 1117 ~0.2218 0.1811 1.9866 -1.6128
0.01 -0.0812 =0.2259 0.2051 28820 =2.5259

For completeness, the first perturbation of the velocity and temper-
ature distributions (f; and 6,) obtained are presented (Figs. 2 and 3, res-
pectively) as functions of 1 for various values of Prandtl number. Both
the minimum and the maximum values of the first perturbations of the di-
mensionless velocity and temperature distributions occur at larger values
of the argument 7 as the Prandtl number decreases. The 6, function is
related to the temperature distribution by Eq. (9), whereas the f; function
is related to the velocity component u by Egs. (26) and (10).

The ratio of the local Nusselt number for a cylinder to that for a
flat plate is shown in Fig. 4. Three trends evident from Fig. 4 are:
(l) that, for a fixed Prandtl number, the Nusselt number for a cylinder
deviates more and more from the Nusselt number for a flat plate as £ in-
creases; (2) that, at a fixed value of the x-parameter (¢ ),there are greater
deviations of Nux cyl from Nuyx fp as the Prandtl number decreases; and



“Iitnmsars sdt LA} dgnd
bas {015 sehslani -saciiay
AUks e laa‘.)? Jf'lh\' "di d?!w

qx-sv.r*arﬁ B e xadr" 1 Mﬁr:‘,‘r"-}
535 aabuitngss AgTE i a3 \(#Lm
& nove  adT ..r_1'~\g'm_. 3 74&_:;5_7_@

o xg e Hos geinsad 2o b foite o
ad,bzu‘! wd 19tls aairaa ool o :
3 oils on ,8Tcistaid ;5.0

.XFJAO
¢ oaideT

A &THAR

= o e

fosa | L9he

t; FESE S
| 48550~

1255.0~

T oG Al
S = slrala e

L cpmd td g da il




(n)

f

L=C Y - T T T T
0.8 Pr = 0.0l .|
0.02 B
0.6 — I
0.ul— ]
- .
3
GaL SO _|
[ 0.1 |
0 1 l 1 J 1
10 15 20 25 30 35 %0
n

. 2. Variation of the

First Perturbation

of the Dimensionless Velocity Distribution fi(n)

Ol



= g | L : 7 . . ..1.3.5.-..,!1&%.. e |
® . | ¥
! Gk Al . ol !
5 Vi i 5 i ¢ :
) noitpdizsaith ytiowlai sgafroinasnril edd 36 noilediizat fosnt Ldl o moi ,J SR




6,(n)

Fig. 3. Variation of the First Perturbation of the Dimensionless Temperature Distribution 6,(n)

LT






(3) that the perturbation method of solution of the boundary -layer equations
becomes useless for Pr < 0.1 because
of slow convergence of the power-
series expansion of both the dimen-
sionless stream function f(€,7) and
temperature 6(€,7n). Since the x-
parameter(£)is proportional to the
ratio of the boundary-layer thickness
to the radius of the cylinder, the
Nusselt numbers for a cylinder are
close to those for a flat plate, and

as the thickness of the boundary
layer increases the Nuy cyl deviates

1.8

more and more from Nuy fp.
)

N N
= cyl/ Ux, fp

The ratio of the local shear
stress for the cylinder to that for a
flat plate is shown in Fig. 5 for
Pr = 100 and 0.01. There are two
aspects of these results which should
be noted: first, that Tcyl/’]'fp varies
only slightly with Prandtl number
over the very wide range considered
here; and secondly, as in the case of
heat transfer results, again there is
the slow convergence of the series
for Pr = 0.01.

Fig. 4

Comparison of Local Nusselt

Number between Cylinder and The Nusselt numbers predicted

Flat Plate by the perturbation method of Sparrow

and Gregg and those by the integral

method of Hama et al., are shown graphically in Fig. 6 as a function of the
distance parameter £ for a range of Prandtl numbers (from 100 to 0.01).
The radius of convergence at the power series in € is not known, but it is
expected to be smaller than one, and therefore Nusselt numbers have not
been presented for £ > 1. On the other hand, the integral method of solu-
tion is expected to be applicable when the boundary layer is thick, i.e., €
is large, and therefore Nu are not shown for £ < 0.5. It is seen, however,
that the gap between the two results is smallest for Pr = 1.0. For all
Prandtl numbers studied the integral method predicted larger values of Nu
than the perturbation method did for small € values (£ < 0.01). This is
expected because the assumed velocity, Eq. (19), and temperature, Eq. (20),
profiles are in error for small values of £. Itis seen from Fig. 6 that, as
Prandtl numbers decrease, the Nusselt numbers decrease and the variation
of Nu with £ becomes smaller.

18
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The local Nusselt numbers for air, Pr = 0.72, predicted by various
investigators for laminar natural-convection flow along a vertical flat plate
and thin cylinder, are shown graphically in Fig. 7 as a function of €. In
the region near the leading edge (small £), the vertical cylinder behaves
much like the vertical flat plate. However, as the distance from the lead-
ing edge increases, the Nusselt numbers for the vertical cylinder deviate
more and more from the Nusselt numbers for the flat plate. For air, the
heat-transfer results predicted by the boundary-layer analysis(l) are
lower than those determined experimentally. 2

10
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Fig. 7. Comparison of the Nusselt Numbers for Prandtl
Number of 0.72.

IV. CONCLUSIONS

An analysis was made of the axisymmetric free-convection laminar
flow about a vertical thin cylinder oriented in a direction parallel to that
of the generating body force. The solutions of the boundary-layer equations
were obtained by the perturbation and the integral methods. Because of
the nature of the assumptions made in obtaining the solutions, both methods
have a limited range of applicability, are only approximate, and are not
expected to be very reliable for small Prandtl numbers.
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The use of flat-plate Nusselt numbers for predicting heat transfer
from a cylinder will always be conservative. The heat-transfer coefficients
calculated will be more conservative for small Prandtl numbers than for
large Prandtl numbers.

For the problem considered here, the boundary layer can become
relatively thick and certain assumptions of the theory will no longer be
valid. The velocity and temperature profiles assumed are not quite accurate
for small values of the x-parameter ¢. In addition, the use of these pro-
files in the integral method of solution might not have been appropriate for
the case of small Prandtl numbers. Hence, there remains a need for a
more exact theory and an experiment to verify the analytical results pre-
sented in this report as well as to provide information on the limits of
applicability of the boundary layer theory for free-convection flows with
fluids of low Prandtl number.
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APPENDIX A

NUMERICAL SOLUTION OF THE PERTURBATION EQUATIONS
[Egs. (13) and (14)]

Inspection of both equations designated Eq. (13), for example,
reveals that f, and 6, appear in both equations, which necessitates simul-
taneous solution. In addition, it should be noted that it is also necessary
to utilize both solutions of Eq. (12) as input data, since fo, £3, fo, fo B0
and 6 all appear in both equations of Eq. (13). In order to carry out the
integrations of both equations of Eq. (13), the values fj, £}, f1', 6,, and 6;
are required at = 0. From the listing of the boundary conditions,

Eq. (13a), it is seen that only f,, fi, and 6, are given at M= 0, whereas

fll and 6, are given at )—>w. Thus, the computational problem is reduced
to a search for the correct values of £ (0) and 6, (0) which would yield
a solution of the equations satisfying the boundary condition at 7 -
within the prescribed accuracy.

A double-precision Adams-Moulton forward-integration method
was chosen for the solution of the equations. The problem was programmed
for an IBM-704 digital computer. To satisfy the boundary conditions at
7] > ®, a continuous iterative process developed by Hering 15) to obtain
initial values of fy (0) and 6, (0) was used. Since the tables(7,8) of the
functions f,, fo, fo, 6, and 6y were not adequate for the integrations of
Egs. (13) and (14), as the increments in the independent variable were too
large, Eq. (12) was also solved. The solution thus obtained was utilized in
Eqgs. (13) and (14). The method of solution of Eq. (14) was identical with
that of Eq. (13).

For Pr = 0.1, the functions f; (1), f}' M), and f;' (n) had a tendency
to oscillate at some point (1 > 0), and these oscillations grew and fed into
other functions. The smaller the Prandtl number, the earlier in the inte-
gration process did the oscillations appear. This was partly due to the
numerical integration method used. By decreasing the increment size
this difficulty was overcome. However, for small Prandtl numbers the
method of solution was extremely time consuming.
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APPENDIX B

REDUCTION OF THE INTEGRAL EQUATIONS
[Egs. (17) and (18)]

23

By substituting y - rg (eo' - 1) and the velocity, Eq. (19), and tem-

perature, Eq. (20), distributions in the integral Egs. (17) and (18), there
results

d y ' 1
r2K? -d;fo [U?-2U(e -1) + (e9' -1)2] (0")? €39 do'
0

o 1 () 1
= rogp| Tw - Ta[f <ezc i e?0 >do' -1 KU
0

and
(0]
d 1
rgK—f [(U+1)0' -g'e? -(U+1)
dx
0

respectively. Performing the indicated integrations, differentiating
Egs. (37) and (38) explicitly, and rearranging terms, one obtains

+

(¢)

dU do
i i
3 dx dx ¢

and
dU do
Sl ey e = ,
Adx de 2
where
_)2 2 2| 30 (z_ i)zc__q_l_(?
a —{§[o<?-o>-§]e +{U+1){o“-0+=]e > 7 20

= [o%*0 - 2(U+1)0e30+(U+1)202e20] 2@

Cla [<e20—1> - 20<U+1)] ;

" gp[Tw - Talrt

A = [o+1+(c+ 1)e?%]0

1
(Ol 2 (O—I)Zeo ]ezgl P ol
= o s

(37)

(38)

(39)
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Egs. (39) and (40) can be rewritten as

and

where

and

of3- o Ffooe2lor )

C = (ﬂ) 2yt
Wl Efe] ke & TaroI

P

Introducing the x-parameter (£) as the independent variable,

_+ — T
a at b aE d
dUu do
— + — (=
AdE, B aE D 5
e o
R S 1= 20U + 1)

(45)

(46)

(47)

(50)
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